Search results

Search for "quantum sensing" in Full Text gives 3 result(s) in Beilstein Journal of Nanotechnology.

Hexagonal boron nitride: a review of the emerging material platform for single-photon sources and the spin–photon interface

  • Stefania Castelletto,
  • Faraz A. Inam,
  • Shin-ichiro Sato and
  • Alberto Boretti

Beilstein J. Nanotechnol. 2020, 11, 740–769, doi:10.3762/bjnano.11.61

Graphical Abstract
  • , quantum computation, and quantum sensing. Their integration in photonic structures such as photonic crystals, microdisks, microring resonators, and nanopillars is essential for their deployment in quantum technologies. While there are currently only two material platforms (diamond and silicon carbide
  • applications, such as quantum information science [1], quantum sensing [2], quantum cryptography [3], and quantum computing [4][5]. After the discovery and assessment of their quantum properties, some of these defects became prominent examples of material platforms for quantum photonics [6][7][8][9][10] and
  • in diamond is currently the preferred platform for implementing quantum sensing and quantum computing approaches, the recent emergence of other interesting color centers in diamond itself [16][30][31] and in other materials indicates that indeed NV is not optimal for many applications, neither it is
PDF
Album
Review
Published 08 May 2020

Deterministic placement of ultra-bright near-infrared color centers in arrays of silicon carbide micropillars

  • Stefania Castelletto,
  • Abdul Salam Al Atem,
  • Faraz Ahmed Inam,
  • Hans Jürgen von Bardeleben,
  • Sophie Hameau,
  • Ahmed Fahad Almutairi,
  • Gérard Guillot,
  • Shin-ichiro Sato,
  • Alberto Boretti and
  • Jean Marie Bluet

Beilstein J. Nanotechnol. 2019, 10, 2383–2395, doi:10.3762/bjnano.10.229

Graphical Abstract
  • element method simulations. Our study provides the pathway for device design and fabrication with an integrated ultra-bright ensemble of VSi and NCVSi for in vivo imaging and sensing in the infrared. Keywords: color centers; micropillars; proton irradiation; quantum sensing; silicon carbide; vacancy
  • ) [53]. Here, we focus on the enhancement of the emission of the VSi, VSiVC and NCVSi/4H-SiC platforms aiming at increasing the photon collection efficiency of many emitters to improve the resolution of quantum sensing in biomedical imaging applications due to the favorable emission in the near-infrared
  • quantum sensing [54] applications using SiC. Experimental Micropillar fabrication and color center generation In this work, micropillars were fabricated by inductively coupled plasma RIE (ICP-RIE) on commercial n-type 4H-SiC. Highly doped n-type 4H-SiC acquired from SiCrystal was used. Using UV laser
PDF
Album
Full Research Paper
Published 05 Dec 2019

Nitrogen-vacancy centers in diamond for nanoscale magnetic resonance imaging applications

  • Alberto Boretti,
  • Lorenzo Rosa,
  • Jonathan Blackledge and
  • Stefania Castelletto

Beilstein J. Nanotechnol. 2019, 10, 2128–2151, doi:10.3762/bjnano.10.207

Graphical Abstract
  • using ultra-low-field MRI and OMRI sequences. The difference images from the two methods reveal a higher contrast of the NDs compared to water. Moreover, this method permits a better tracking of NDs in biological samples using OMRI sequences. NV-center quantum sensing There are different concepts
PDF
Album
Review
Published 04 Nov 2019
Other Beilstein-Institut Open Science Activities